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.\ ABSTRACT
N/ Omega- K fﬂ
There are simple domains -@ in ,I?”having re-entrant corners for which
M

the variational solution u to the capillary problem exists, is bounded, but
AR AL OMEGA

does not extend continuously to 3. How possible is it to characterize

domains for which u must extend continuously? This paper contains the

following answer:

Theorem let P, € 3Q. Let u be the (variational) solution to the capillary

0
problem in R with contact angle Y, 0 < Yy ¢ w/2. If any of (i), (ii), or

(1i1) hold, then u extends continuously to Pg,:

(i) Q is convex in a neighborhood of P;, 31 has local Lipschitz
constant L1 < tan Y.

(11) 3 1is (locally) two ¢! curves meeting at Py with interior
angle 0 satisfying w# -2y ¢ 9 < =,

(11) 3@ is c' at P,

AMS(MOS) Subject Classification: 35320, 35J25.

Key Words: capillarity, boundary regularity, irregular, continuity, contact
angle
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SIGNIFICANCE AND EXPLANATION

After water is poured into a vertical tube with horizontal cross section
Q the function u whose graph S, describes the meniscus height satisfies
a nonlinear elliptic partial differential equation: The mean curvature of
S, is proportional to its height above a fixed reference plane, and at the
boundary the angle of contact between (the lower normal of) S . and (the
exterior normal of) 90 x R is physically determined (constant if the
cylinder is of uniform contruction).

Nonlinear elliptic equations with co-normal derivative boundary
conditions, of which the above capillary problem with prescribed contact angle
is a prime example, occur frequently in physical problems but have not been as
extensively studied as those with Dirichlet boundary conditions (u prescribed
on df). There are many known results about when variational (weak) solutions
to Dirichlet problems extend continuously to the boundary, but there is not
much literature about the same question for co-normal derivative problems.
That is the problem studied in this paper--for the special case of a two
dimensional capillary surface making prescribed angle of contact with the

bounding cylinder.

Roughly speaking, the main theorem in this paper says that u extends
continuou?ly to a point P, € ¥ if 23Q is ¢! there, if 92 is the vertex
of two C' <curves meeting with a convex (less than ¥) interior angle there,
or if 31 is convex with a not too large Lipschitz constant there. Since
there are easy counterexamples to show that u need not extend continuously
if P, is the vertex of a re-entrant corner (interior angle greater than

®), these conditions are almost necessary as well as being sufficient.
Because well known results show that u actually extends smoothly wherever

9 is sufficiently smooth, the importance of these results is that they
require a minimal amount of regularity for 3f.
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CAPILLARY SURFACE CONTINUITY ABOVE IRREGULAR DOMAINS

Nicholas J. Korevaar

§1. Introduction
For a Lipschitz domain @ in ®¥ a function
ue cz(ﬂ) N c'(8) 1is a classical solution to the capillary

problem in a gravitational field 1f:

(1) divTu = 2"’\;) =y in Q,
Du

B el

Ta = 7——! . ﬂ(su) = mean curvature of the graph

1 + [Duj

8 of uw, k>0,

u
{2) Tuen=cos Y on 9,

0 € yvy<7¥® prescribed, n = exterior normal to 3fl.

Physically, 8, describes the capillary surface forme

a vertical cylinder with horizontal cross section & is pl

4 when

aced in

an infinite reservoir of liquid having rest height equal to zero.

This material

Sponsored by the U.S. Army under Contract No. DAAG29-80-C-0041.

is based upon work supported by the National Science Foundation under Grant

No. HG-7927°62, Mod. 1.

OSSO WY RS




v TIRETRETESL AT TR ey Y T T

Then

K= %ﬂ where p density of liquid

(downward) acceleration of gravity

"}
[

6 = gurface tension between liquid and air
o
cos Y = ;1 where

Q
[]

surface attraction between liquid and

cylinder.

Geometrically, Y is the contact angle between the (downward
normal to the) capillary surface S, and tho'(exterior normal to
the) bounding cylinder 232 x R.

The function u minimizes the variational problem associated
with (1,2) if it minimizes the energy functional

AT I %
(3) Bif) = [o(/1 + ID£1° + 3 £7) - [0 v, v=— = cos ¥
over the appropriate space of functions.

There are simple domains R in R having re-entrant
corners for which the variational solution to the capillary
problem exists, is bounded, but does not extend continuously to

9@ (13]. How possible is it to characterize domains for which

u must extend continuously?

Theorem. Let Py © 9., Llet u be the (variational)
solution to the capillary problem in § with contact angle v,
0 <y < %x/2. 1If any of (i), (ii), or (iii) hold, then u
extends continuously to Pyt .

(1) 2 1is convex in a neighborhood of Py 30 has local

Lipshitz constant L, < tan y;

1
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(14) 30 1s (locally) two ¢! curves meeting at P, with
interior angle 8 satisfying ¥ = 2y < 8 < x;

(144) 3 is c' at ».

Since well known boundary regularity results imply that u
extends smoothly wherever 32 is smooth enough (see e.g. {17, 19]),
the importance of this theorem is that it does not require much
regularity for 9. Roughly speaking, in order for u to have a
jump at Py it needs room, such as at a re-entrant corner. If
the corner is convex or there is no corner, a bounded u can have
no jump and must be continuous.

Studying the same problem, Simon has shown that if Py is
the vertex of two c"“ curves meeting with interior angle 9,

® =2y < 6 <%, then u actually extends to be c1 aﬁ Py
{16). His method requires a strict corner 6 < =, c1'° curves,
and uses geometric measuxe‘theoty to get a strong result: u |is

c!

at Pjy. Our method requires less of the boundary, uses only
comparison methods, but gives a weaker result: u is continuous
at Po.

(The condition 0 > w - 2y (and the related L, < tan Y)
that occurs in these theorems is essentially geometrics If u
was to extend to be ct at P; and if the contact angle
condition was to be satisfied with both faces of 231 x R there,
then 0 > w ~ 2y is necessary for the tangent plane to exist.

For 8 < ¥ = 2y no tangent plane can exist, and in fact u

approaches infinity as P, is approached in this case (3)).




§2. Preliminaries
rirst some notation: Domains £ shall be bounded with

Lipschitz boundary 9@ unless otherwige stated. We restrict to .
the case 2 C Rz. All integrals over a domain are with respect to
(2-dimensional) lebesgue measure, all integrals over boundaries of
domains are with respect to (1-dimensional) Hausdorff measure.

|81 1is the area of Q, || is the length of 23R Bp(Po) and

Sp(l’o) are the open ball of rad;ua p centered at Py and its
boundary sphere.

We discuss capillary surfaces that solve the variational

problem (3) associated with (1) and (2); u should minimize

;(£)=f(o/1+lnf|!+§9£2)-[of

2 2q !

over the appropriate space of functions. The three terms making
up the energy functional are | (in order) surface energy, potential
energy from gravity, and wetting energy. Emmer [5] and Finn-
Gerhardt (7] have studied the existence of variational solutions
u to the capillary problem in Lipshitz domains €. Wwhen it
exists the function u is real analytic in R and satisfies
(1). Wherever 31 is smooth enough u extends smoothly and
satisfies the boundary condition (2) classically (17, 19]).

Even when 30 is only Lipschitz, however, the fact that u
minimizes the energy (3) implies that (2) is satisfied in some

weak (integral) sense. This weak boundary behavior is still 'l

strong enough to use a comparison method for surfaces of related




mean curvature and contact angle. The comparison method has been

widely used in capillarity [1~-4, 7, 13=1S, 20, 22~-24] and a

version of it is also the primary tool used to prove our main
theoren.

We state below the particular form of the comparison
principle used here, after defining the type of weak boundary

bshavior for which it is valid.

Definition. A sequence of domains {Dx} exhausts 0 1if
1 = )
each ank ec, ﬂkC nk" and Uk-i %: = Q.
Definition. lLet u € c’(m. ve !..( M)e Tuen= Vv weakly
on 38 if for any exhausting sequence {Qk}. and for any

ter @ nw'ta,
lim | fTuen, = [, v = exterior normal to 3Q .
om0 " Jaa V" ™ a

Local boundary values of Tu°n must sometimes be considered.

This can be done in a manner consistent with the above definition:

Definition. let U C R® be open. Let u e c2(D),
ver (3 NU). Tun=v weakly on 38N U if for any
exhausting sequence {2} of 2 and any fer™®m nw'''(a)
s.t. the essential support of the trace of £ on 230 is

compactly contained in U N 99,

oo faak frueny = [5g vt.




Remark. To prove that the variational solution satisfies

Tuen = V weakly, one. does the usual Euler-lLagrange derivation of
equations and boundary conditions from (3), except that one
integrates by parts over ﬂk instead of over £ (u 1is smooth in

2, hence over ﬁk). The details can be found in (7], or for a
more systematic exposition, [14]. In the same references it is
also shown that a smooth surface Sy that classically satisfies

Tven = V (wherever n is defined) also satisfies Tven = v

weakly.

Comparison Principle. (Essentially Lemma 3 of [7]) Let
vow, € C2(2). Consider a component O of the set on which
v > w. Suppose that:
(1) x e 0= div Tvix) > div Twix),
(11) on 0 N 38, Tven < Twen weakly.
Then O = ¢. (So if (4) and (ii) are true for all components,
v<we.
{Condition (ii) means that there is some open set
UD0 N 32 on which Tven and Twen are defined weakly and
that their weak values satisfy Tven € Twen almost everyvhere on

0 N 29). see [7) or [14) for the proof of the comparison

principle.
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§3. Proof of Theorem

The techniques used to prove the main theorem are barehanded.
The accompanying figqures should help keep notation and ideas
organized. The proof follows this outline:

We consider the domain f, P, @ 3, and the variational

0
solution u e cH@ A B''1(Q) of (3). we take Y to be
conatant, 0 < Y < %, (Essentially the same proof works if vy is
allowed to be a continuous function on 3Q). Since u minimizes
(3) iff -u minimizes (3) with Vv replaced by =-v, it is no
loss of generality to agssume 0 < Yy € %/2, and we do.
 Let
U= 1lim sup w(P), L = 1lim inf u(P).
P+p), PEf pep,, PeQ

If L and U are finite, then certain geometric contraints

on 3 imply the existence of "ridges” and ditches": For any
€>0, 3 Py > 0 so that for any radius p, 0 < p< Pyr there
is a ridge R: and a ditch U:. These are connected components
in Bp(PO) N 8 of the sets on which u(P) > U - € and

u(P) < L + ¢, respectively, and extend from Py to sp(Po)'
(See Figure 2 and Lemma 3).

For domains satisfying conditions (1), (ii), or (iii) of the
main theorem an explicit comparison function is constructed
(Pigure 3 and Lemma 4). If L #¥ U, it is used to slice through
sither the ridge or the ditch and thus to contradict the
conparisoﬁ principle (Pigures 3, 4, and Theorem 1). Thus, L = U

and u is continuous at Po.

L |




The existence of ditches and ridges as well as the argqument
used with the comparison principle depend on the special topolagy
of I?. The comparison argument is similar in spirit to one used
by Finn for minimal surfaces [6], and later by Finn-Giusti for
constant mean curvature surfaces [8] to obtain interior gradient
bounds in two dimensions.

Because 0 is Lipschitz near Py there is a Lipschitz
function y = ¢(x) and a neighborhocod UV of the origin so that
after a translation and rotati&n

Po = (0,0)

(4) VD 2=V N{p = (x,y) s.t. y<d(x)}.

If Q@ satisfies (i), (ii), or (iii) of the theorem stated in

the introduction, we may also suppose that

(5) lim_ ¢'(x) > 0 > lj.m+ $'(x)
x*0 x»0

and

(6) sup|¢'(x)} = L, < tan ¥

1
(x,'(x)) e V.

(The limits and sup are taken over those values of x for which

#'(x) exists).

We prove:

Theorem 1. If (4)-(6) are satisfied and if u is the
variational solution to the capillary problem with contact angle
Y in 9, then u extends continuously to Pge

The first step is:




Lemma 1. If (4)-(6) are satisfied, there is a neighborhood
Uucv ot Py so th;t u is uniformly bounded in U N Q.

Proof. We introduce the concept of an internal sphere
condition with contact angle (due to Finn-Gerhardt [7]). Domains
satisfying this condition have uniformly bounded solutions u. We
then show that if Q satisfies (4)-(6) of Section 3, it satisfies
the appropriate internal sphere condition with contact angle Y,
near Pgj.

Definition. Let 0 ¢ 70 € %/2 and pPe€e §l. P satisfies an
internal sphere condition with contact angle YO and radius »p

(Pr e i.s.c.p'Yo) if there is a ball Bp of radius p, P € Ep,
such that any lower hemisphere lying above Ep makes contact
angle < Yo at all points of contact with 239 x R for which the
normal to 9% is defined.

Definition. A neighborhood U N I satisfies a uniform
internal sphere condition with contact angle Yo and radius

s Un qc 1.s.c.6’Y ) if PelUN Q=3 p>§ s.t.

0
P e i.s.c. L]

P.Y

This conc:pt is illustrated in Figure 4. We have:

Step 1([(7]). 1f UNQC I.s.c.cﬂo, then any solution u
to the variational capillary problem (3) with |v] € cos Yo is
uniformly bounded in U N Q.

Proof. (See [7]). This is a straightforward application of
the comparison principle. The comparison surfaces are the graph
of the solution, sufficiently high lower hemispheres (for the

upper bound) and sufficiently low upper hemispheres (for the lower

bound).




Figure 1:

The internal sphere
condition with
contact angle.

A cormer with interior
angle @ sacisfies a
uniform internal spherve
condition for any

7;~!§£L, ,
‘o.. .
. "-37.

agx!!
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o rn
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Step 2. We show that if @ satisfies (4)-(6) there is a
neighborhood U of i'o anda §> 0 so that

un g z.s.c.s Let ¢€,p > 0. Take

Y

U = 39(91)0 P1 = (0, -o(1-€)).

For small enough €,p, we will have UNn @ C z.s.c.5 ‘\"
’

—~ For the lower hemisphere above U, 2z = v(P), we have
Tv(R) = 2 (P-P,).
) 1

The exterior normal n to 9 is

1

n - 7======ﬁ (-$',1)
1+ (¢9")

so that for P = (x,y) € Bp(P1) a0,

(7 Tven = 3 (=x¢* + g + p(1=€)

P71 + (¢')

If ¢'(x) exists then
y = f3 #'(01at = [X (40 (e) = prix)Iae + x¢' (x).

But (5) implies that the right and left-hand limits of ¢' exist

at x = 0, Thus, for any €, >0 3 po >0 s.t.
(8) P <Py = x4 (x) > -€,p,

Combining (7) and (8) implies that if o < P

1-6"21

9) TVe >7g.
( " 1+ (¢")

From (6) we have
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1 1 1

b

> = o8 Y
/1 + 1L /1 + tan Y ’

1
small enough to make

(10)
/1 + 40')’

so that we may choose ¢, c1

1

(1-e-e1) > cos Y.
/1 4+ (O')z

Thus. for p < po(el),

TVen 2 cos Y. Q.E.D.
We use the following facts often and group them as:

Lemma 2. Let U be an open set, v e iy n 31'1(U)- Then
for almost all 2z, {P: v(P) = z} is a regular set (a collection
of simple closed curves and curves without endpoints in (J) with
finite total length.
If T 4is any smooth curve in U, then almost all level sets -

of v in U are transversal to T.

Proof. Almost all level sets are regular by Sard's
Theorem. The co-area fomula (9] implies that almost all the
lengths are finite, since v € Wi’ V(U).

Parameterize I by arclength 8 and consider the
restriction of v to [. By Sard's theorem almost all level
sets S are reqular with v'(s) 0 on S. These sets S must
arise from transverse intersections between I and level sets
of v in U. Q.E.D.

Lemma 3. If u is bounded and (6) is satisfied (in
particular, if (4)-(6) are satisfied), then given ¢ > 0,

< | 9‘ >P Set. for all 0 < p < 91'

=]l2-

B




(a) There is a ridge R:, a connected component of the set on

=€
oeRp

(b) There is a ditch D:, a connected component of the set on

which u > U - ¢ satisfying P and E: N sp(Po) NnNg#+ ¢

which u < L + ¢ satiafying P, € 'ﬁ: and 'ﬁ: A S () N A+

Proof. Since u is bounded in (U N 8, H(su) is bounded

(1) and we may pick M, < ® s0 that

1

(1) laiv tu(p)| <M, PelUn .

et € >0 be given. To find R: ve compare S, to the upper
half of a horizontally inclined cylinder. Its axis of symmetry is

parallel to the x-axis and it has radius -"—1 {see Figure 2).
1

Specifically, let

3
vix,y) = ,(-é) - (y -;iw 5% &> 0.

By a useful abuse of aotation we continue to call this
function v and its graph .84+ even if we raise it or lower
it. By construction, for all P in the dowmain of v and in

un g,

(12) div Tv = 2n(sv) = -M_ < div Tu.

1

Making & small enough and picking a small enough

neighborhood U 1 ClU of Po we can satisfy

(13) ' Tven > cos Y on I N U, .




8y:{z=v(x,y}}

p R L

O

r---——-—-— - e e

8, {3 =w(x, 7}

Bigurea:
Ridges and Ditches.

“]lg~-




This is because l:.1 < tan Y:

Tven =

7-X==§cos Y.

(By making § small enough, can be made arbitrarily

1+v
Y

1+ 4

close to 1 near Po = (0,0)).
Lift S, so that the points P in U1 N Q@ above which

8, intersects S, from a regular set with finite total length

(Lemma 2), and so that

2€ [
O - 3 < V(Po) < U 30

Since v is continuous at Py there is a p1 >0,

p1(1’0) c u1 and

3 €
(14) U-‘c<v(l’)<u-4 renp(ro)

For p < p (12), (13), and the comparison principle imply

1
that every component 0 in np N of the set on which u»> v
must have limit points intersecting S8 0 (in a set of non-zero
Hausdorff measure).

Because of (14) there are points P arbitrarily near Py
where u(P) > v(P). Por each i € N (with 1/1i < p) pick Py

Sete

1
'P - P‘.l < ’

Let 0, be the component in Bpﬂ f of the set on which

u > v containing P;. Since oin 8 (Po) # ¢, it follows that




-

i a e aali

1
(18) laoil > 2lp - 1"

Since 3(001) has finite length in Bp and since at most
two 01'3 can*share any given boundary curve, there are only a
finite number of distinct 0;'s. Hence, one of thenm, 011,
contains infinitely many Pi's, so has P, as a limit point.
From (14) it follows that 01‘ is part of a larger component in

Bp N Q3 of the set on which u > U - €. This component R: is
our ridge.

Finding the ditch 0: uses the analogous procedure: Instead
of the upper half of the cylinder placed to intersect Po x R at
a height just beneath U, one places the lower half of the
cylinder so that it intersects Po X R just above L (see
Figure 1). Q.E.D.

Remark. Lemma 3 uses the fact that { C nz crucially; the

inequality (15) would not follow in general R".

Iemma 4. Suppose (4)-(6) are satisfied. Let the following

be given
61, 62 >0

L,U,M lltilfying “M <L <CUCM.

Then there is a neighborhood ( of Pg = (0,0) and a comparison

function v definedon | N Q satisfying

(1) vecikuna), laiv v - xv| < <81

4
(11) ung) = y P*, where the Pi are described in
i=9

-16=
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rigure 3, and
Tven > cOs Y oOn l“,
vapM on l‘z
v e =M on rs
Tven € cos Y on l“;

(1i1) For P near enough Pge jv(P) -%y-l < 62.

Proof. (see Pigure 3) §, will be almost vertical and its
level sets at height 2z will almosgt be arcs with curvature «z.
(Tﬁo fact that almost vertical surfaces with almost circular level
sets can almost satisfy the capillary equation has been used

effectively to study capillary surface behavior above corners with

interior angle & < ¥ - 2y ([3)).
The function z = v(x,y) is given implicitly (after a

rotation about the z-axis) by
XE
(16) x== y(y+h) + S(y+hp (2)

wvhere h is small, § €h, and ¢(z) satisfies

el <1,k<o.v-o in a small neighborhood of z-%g.

cz (M, M) oz

If § = 0, the surface S, has a level set at height =
that is part of the parabola through (0,0) and (0,-h), and
that has curvature almost equal to xz. Por 0 ¢ 8§ €h the
second term on the right of (16) is a amall perturbation added so

that v satisfies (ii) and (iii),

=]l7=
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Figure 2 shows the surface §, satisfying all three

conditions of Lemma 2. The key property of the differential
equation (1) that allows the construction of S, is that the mean
curvature is strictly increasing with height. The key property of

30 is the “half C'" condition (5). (1t's necessary for (ii)).

f
when it doesn't hold, for example at a re-entrant corner, u may 5
;
fail to be continuous (13].
The calculations verifying (i), (ii), and (iii) of Lemma 4

are included as Appendix A. Q.E.D.

Lemma 5. (A crossing lemma in two dimensional topology)

Congider a simple closed curve L with interior (. Let A,
B, C, D be a distinct, consecutively-ordered points on I. If a
simple curve ' in 0 has A and C as its two endpoints, then
the following hold:

(1) There is no curve in 0, disjoint from T,
connecting B to D.

(11) No connected open subset of ( disjoint from I can

have both B and D as limit points.

Proof. This lemma is a consequence of the Jordan Curve
Theorem: Consider the simple curve obtained by following T
from A to C, then following I from C to D to A. All
points in a neighborhood B of B are exterior to this curve.
{They can be connected to infinity). All points in a

neighborhood D of D and inside 0 are interior to the curve

(since the points outside ( are exterior to it). Hence, any




path in O connecting points in D N 0 to points in BN 0 must
cross I'. This proves (i) and (ii). Q.E.D. %
We are now in a position to prove Theoremz 1. We suppose

U > L, equations (4), (5), (6), and get a contradiction. Let

i
¢
i
U-L :

(17) € < ‘

? By Lemma 3, I Py 0 s.t. for p < p, there is a ridge g

n: and a ditch v:. pick

=€
(18) R € Rp n sp(ro) ng D

=€
. evpn sp(ro)nn

[\
We assume that there are arbitrarily small p > 0 for which
Rp is oriented clockwise in {1 from Dp, on sp(Po)' This is
no loss of generality: One could reflect the domain Q and the }
solution u across the y-axis, preserving (4), (5), (6), and the
resulting lemmas, but changing the relative orientations of

.| o
Dp an Rb Let

(19) 6‘ = 62 = Co

r—s

Pick a comparison surface S, satisfying Lemma 4. U will be the
domain from this lemma, above which v is defined. From (17)-

(19), and (1ii) of Lemma 4, 3T p_ < p' s.t. for o < 92‘

e A T e YT AT e

2
»‘
PeR:nn-u(P)>u-c>2§3-'+2c>v(p)+c !
(20)
Peﬁ:nﬂou(l’)<:.+c<-°—;£-2e<v(p)-e. X




Pix a p < o, and the resulting R:. 0:, Rp, Dp, with Rp

oriented clockwise in 2 from Dp. on § p(l’o). Equations (18),
(20) imply that ﬁ: N Q@ is contained in a component R in
UND Q of the set on which u > v + €., Also, ﬁ:ﬂﬂ is
contained in P, a component in (I N @ of the set on which

u<<v~-¢€, Combining (i) of Lemma 4 with (19), (20) yielas

(21 for points in R, 4iv T(v+e) = div Tv < x(w&,) < xu=daiv Tu

for points in g, daiv P{v-¢) > div Tu,

Thus, the combination of the comparison principle and all
four conditions from (ii) of Lemma 4 imply
IR n (1‘3 V] 1‘4” 0

(22) -
B Nr V)l #o.

Because of the way they were picked, (22) implies that R

and 0 must “cross" each other (see Figure 4). But R ana D
cannot intersect. Making this argument rigorous is technically
tedious, but proves Theorea 1.

We can assume that 3R, 3D are regqular, of finite length in
UNQ, and that IR and IV nmeet sp(ro) transversally. (If
not, use Lesma 1 and pick a slightly larger ¢ < _z%p__ The
old R,0 will be contained in a new R and 0, (larger)
components of the sets on vhich u> v+ ¢, U< v=~cg,
respectively).

We show that (22) cannot be satigfied.
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Let Rp be the component of R N Bp(Po) which contains R,

in its closure. LlLet Dp be the component of D N Bp(?o)

containing Dp in its closure (figure 4).

By construction R€cR_  ana D‘ CD_ so that
P p ] ]
' (23) Pp.eR, P

There are only a finite numbex of other components of
RN Bp(PO) having P, and points on sp(Po) N Q as limit
points, since 9 has finite length. If any of these have limit
points on sp (Po) that are between Rp and Dp but nearer to

Dp than the limit points of R o relabel: Take the one of

these with the nearest (counterclockwise from D p) limit points
on sp(Po) and call it R o Relabel one of its limit points on
sp(PO) N R 0 as R 0 (Such limit points in R 5 exist because
R is trangversal to S p). Equation (23) still holds and we
proceed.

Let R; be the point between Rp and Dp on sp(Po)
nearest Dp and in 1-2. 0 let D, be the point between Rp and
Dp on sp(Po) nearest Rp and in 59 (Figure 3).

We follow the curves PR of 3R through Ry and I'D of
® through D,. Let l‘; ’ I‘; be the rays initially entering
B (Py). Let rg, rg be the rays initially leaving it.

+
Pollow l‘R into Bp(PO)' It cannot intersect sp(Po)
again. (We use (23) and Lemma 5 repeatedly here): if it

intersects sp

=23-
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(a) between P1 and Rp, then Po ¢ Rp,
(b) between Rp and R1 or at R1 then Rp ¢ Rp'

(c) Dbetween R‘ and Dp, then R1 is not the nearest

point to Dp between Rp and D, on ﬁpf‘ Sp(Po).

(d) Dbetween Dp and P4, then Po e 59.

Because IR has finite length, r; has exactly one limit
point. Eecause 3R is regular this point is on 3QN E;TE;T. It
must be P,: otherwise the combination of (23) and Lemma 5 (with
the other three points being Rp, Dp, and Po) would be
contradicted.

The same reasoning shows that r; never intersects Sp(Po)
after D,, and has P, as its limit point.

Follow :2 out of Bp(Po). It too must eventually have a
limit point ° . on 3(U N Q). Before it reaches R, it can
interiace s’(PO) a finite number of times between Rp and Dp.
Any tims v enters 'p(’o’ through this arc it may:

(a' .. - on another arc of sp(Po) between .P1 and R

(<]

or betwe . R Y r‘. Za either case, this would contradict

the combt:..¢ . o0f 723) and Lemma S.

(b) N.% .. 7e BQ(PO). Arguing as with P; it would follow

that r;'. lir .t Lnoint was Py. If its last intersection Ry

ith 8 .-
L o as

(1) between Rp and Rqe ‘en Ry could not be in
Rp:
(14) between Ry and Dp, thei' the arc of P;

from Ry to Py bounds a component of R

=24~
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having Py and points on 8 0 between R, and
D 0 .n limit points. This contradicts the
paragraph following (23).

(c) Leave Bp(Po) through the same arc.
Thus, case (c) happens, so Ip intersects the arc of sp"o’
between Rp and Dp an odd number of times.

Consider the simple closed curve I: from P, to R,
(along P;), from R, to R, (along !‘i), then clockwise along
(U NQ) back to Pge By construction, R 0 and hence all

of R is interior to I. Thus, (22) implies that
N
R, € (T,U TO\(T, N T,

Because [ is transverse to S p(P“) and intersects the arc
between Rp and Dp an odd number of times, D 0 and hence all
of D must be exterior to I. Thus, U cannot intersect

l‘1 v l'z and we have our contradiction to (22). Q.E.D.




§4. Related Questions

In what ways can Theorem 1 be generalized? It is clear from

the proof that Y could be allowed to vary continuously along
38, with 0 < Y(P) < w. The differential equation could be

generalized to
' of
div Tu = £(x,u), £ continuous in (x,u), E™ > e°> 0,

provided it was the Euler equation for a variational problem that
implies the weak boundary behavior needed for the comparison
principle.

Are there situations for which 31 is not regular but u

still is more than just continuous?

Conjecture. If Q2 is (locally) convex in a neighborhood of

P, € 92, with Lipschitz constant L

Lipschitz continuous there.

1 < tan Y, then u |is
One cannot expect much more than Lipschitz continuity in this

case: One can construct a convex domain in R? for which Py 1is
the limit (from both sides of 31) of points on 98 at which

N 1is locally a convex corner. If u is C‘, then the contact
angle condition on each segment of the corner uniquely determines
the tangent plane at the corner. If 3Q does not have a tangent
at Py, the liniting values of the gradients of u at these
corners will be different from each side (provided Y # x/2).

Do the results of Theorem 1 generalize to R"? The method

does not seem to.
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Appendix A: Proof of Lemma 4

We consider the function

(1) x = ‘—; y(y+h) + 8(y+h)v(z) = gly,z)

and its graph S. We show that for a correct choice of the
parameters h, 8§, and the function ¢, (a rotation of) § will
satisfy the conditions of Lemma 4.

Require initially:

(a) 0<8<h

() el <1, ¢'(z) €0

c2(-u,m)

{e) ]z]l <M, ~h < y < min(alx|,h),
where a > 0 is chosen large enough to guarantee that the
rotation of S needed to satisfy the contact angle conditions
(ii) of lLemma 4 will keep S lying above a satisfactory
neighborhood U N . For example, choose

(d) a > 2 tan [% -7l

We first finda ¥ and bound h so that S is a ¢2
graph 2z = v(x,y) and so that condition (iii) of Lemma 4 is

satisfied. Let

f 8
3 14U 2
u(z’ z) z)> z1 2 + 2
1+U 62
= 9 N e—— - o=
(2) v(z) 0 z, >z 2, 2 2
3
Lu(zo-z) zo > 2,

T e

g ok T
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vhere ¥ > 0 is small, so that u satisfies (b). 1If
(x,y,z) € S and (x,y) is near P;, (1) implies that v (z) is
small. It follows from (2) that if (x,y) 1is near enough to
Pgs z 1lies between the bounds of (iii).
The surface § is C2. To show that it is a graph
z = v(x,y) it suffices to show that -:-3 € 0 in the entire region

(c). 8ince

(3) g, = (y+t) t-%r + 89 (2)]

and since V¥'(z) < 0, 9% is negative for y < 0. For

0 <y < min(alx],h) we are more careful. Prom (3) we want
v (z) < - % . 8o for (x,y,z) €8, 0 <y < min(a{x|,h) it

suffices to finad
(4) v (s) < -'-'5%’3

We want (4) to be satisfied for small enough h. We treat the

case x < 0, z>¢2 The case x)ﬂ,s(:o is analogous. 1If

1.
x= 0, then y < 0). PFrom (1) and {(c) we have

0> x = (y+h) [%y + 8¢(2)) > A [n;u+ $v(z)].

x{1 - xah] > hév(s).
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(5) x > 2ché&v(z), C= 1-:-;;§;;

Plugging (5) and the explicit form (2) of ¢, into (4) gives
~3u(z,-2)% < xach(z,-2)>.

This inequality holds near z, = z. To make it true for all

z4 < 2 <M the bound (e) on h may be lowered if necessary.
Thus, 9, is negative in the entire region (c) and we may

write S = S,. To calculate the mean curvature of S we return

to the parameterization x = g(y,z):

r=g = xz(y + %) + & (z) = 0(h)

= Svly + h) + & (y + )y*(2) = 0(nY)

s = gz
" - 2
{6) 9 ™ S(y + h)¢"(z) = 0(h°)
gﬂ = K%
h
Iyp ~ K(y +3) + 8¢'(2) = 0(h).
8o

2 2
(1+s )qyy + (1+r )gzz 2"91:
3/2

div Tg(y,2z) =
(1+r2+32)

- xz + 0(h?).

Thus 3 hy; so that
(£) 0<h<h,

implies condition (1):

'div TV - “l < ‘6'0

-
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It remains to verify (ii). Define Pz and Ps to be the
sets in R? above which S has height M and ~N,
respectively. For small enough h it is easy to calculate that
the restriction of (c) that y < h is redundant; the (arrowhead-
shaped) region A in R? above which S8 is a graph is bounded
by the arcs Pz, Ty, and the wedge y = alxf.

To simplify the calculations we fix S and rotate 30
about Pj = (0,0) (rather than rotating S and fixing 3IR). We
continue to use ¢ for the function describing 3Q. At a point
(x,¥y,2) of contact between S and 3 x R, the (downward)

normal to S is
1

TFE (~1,x,8)e
14 +8

The (exterior) normal to 3 x R is

L (""v‘to)o
1+¢°

8o their dot product is

(» Tven = Ty
14¢° t4res

Since h is small and r,s = 0(h) the correct rotation of
3N will make 0'//q:;73. vary near cos Y: nearly a rotation of
%/2 = ¥ radians. The choice (d) on a Ainsures that
¢(x) < ajx| for such rotations so that 8 is still defined

above a suitable neighborhood in I define P' and Ps to be

~31=-




; the intersection of 3R with the points in A to the left and
! right of x = 0, respectively.

From (5) of Section 3,

(8) lim_ ¢'(x) > 11n+ ¢'(x),
x*0 . %x%0

.
e Ohe e AW P 5

and by construction (see (2), (6))

xh
lim v == (z_ -2 ) + 1lim r
x*0 2 10 x00+
(9)

lim_ s = lim_s.
x+0 x+0

It follows from (7)=(9) that for h small enough there is a

rotation of 3R making -

lim Tven > cos Y > lin* Tven.
x*0 x+0

Make the parameter § of (1) (which was free until now)

A TN g Bt SN € WML S0 1o 2

small enough so that all x-values of S N (3Q x R) are near

enough zero to force the conditions

Tven > cos Y onl‘1, Tven < cos Y on rs.

This finishes the verification of (if{) and thus of the entire
temma 4.
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